Durante mucho tiempo no había principios uniformes para la Atribución de nombres a los antibióticos https://antibioticos-wiki.es . Más a menudo se les llama por el nombre genérico o especie del producto, con menos frecuencia-de acuerdo con la estructura química. Algunos antibióticos se nombran de acuerdo con el lugar donde se asignó el producto.
Amt.ac.cn
Robust Inference in Semiparametric Models
East China Normal University, Shanghai, China
• Semiparametric Models for Longitudinal Data
• Influence Diagnostics of Semiparametric Models
1. Case Deletion and Subject Deletion Analysis
• Robust Estimation of Semiparametric Models
{(xij, tij, yij), i = 1, . . . , m, j = 1, . . . , ni}.yij = XTijβ0 + g(tij) + eij,• β0 ∈ Rp , g is a smooth function ,
• eij are random errors, and are independent between subjects
eij = ZTijbi + Ui(tij) + ij, n =
• ni = 1: usually partialy linear model
• In dependent data ni = 1
1. Speckman (1988),Hardle, Liang and Gao (2000):kernel
2. Heckman (1986), He and Shi (1996), Eubank (1999):spline
• Longitudinal data and mixed models
1. Zeger and Diggle (1994): application to CD4
2. Moyeed and Diggle (1994): convergence rates
3. Zhang, Lin et al (1998), Lin and Zhang (1999), Ruppert,
Wand and Carroll(2003): penalized likelihood
4. Lin and Carroll (2000,2001a,b,2002):GEE
1. Cook and Wesiberg (1982), Wei (1998), Banerjee and Frees
(1997), Fung, Zhu, Wei and He (2002):Case Deletion
2. Cook (1986), Lu, Ko and Chang (1997), Lesaffre and
Verbeke (1998), Zhu, He and He (2003):Local Influence
Influence Diagnostics of Semiparametric Model
L(β, g) = l(β, g) −g (t)dt = l(β, g) − gT Kg
l(β, g) = − log |V | − (Y − Xβ − N g)T V −1(Y − Xβ − N g),• Penalized likelihood estimation
H = I − ΣV −1 + ΣV −1 ¯
g N + λK)−1N T Wg dcdT• Cook distance of parameter βc WxX (X T WxX )−1X T Wxdc• Partial influence for nonparametric part g
DFITij = |dTc N(ˆg(ij) − ˆg)|/sij
where s2ij is the cth diagonal element of N(0, Ir)C−1(0, Ir)T NTθ = (βT , gT )T , Ei = (0, . . . , In , 0, . . . , 0)T ,• Testing statistics of outlying subject
Ti = ˆeT Ei(In − ¯
CD[i](β) = RTi Hβ,iRiHβ,i = ETi WxX(XT WxX)−1XT WxEi
CD[i](g) = RTi WgNS−1NTi (NiS−1NTi )−1NiS−1NT WgRi• Perturbation penalized likelihood L(θ, ω)
θω is the estimate of θ under perturbation
F = ∂2L(ˆθω)
Fw = DT (ˆe)V −1 ¯
e1, · · · , ˆem)
Partial influence matrix for parametric components βFw(β) = DT (ˆe)WxX(XT WxX)−1XT WxD(ˆe)
Partial influence matrix for nonparametric components gFw(g) = DT (ˆe)WgN(NT WgN + λK)−1NT WgD(ˆe)
Fe = DT (ΣV −1ˆe)V −1 ¯
Fe(g) = DT (ΣV −1ˆe)WgNS−1NT WgD(ΣV −1ˆe)
Fe(β) = DT (ΣV −1ˆe)WxX(XT WxX)−1XT WxD(ΣV −1ˆe)
e)WgNS−1NT WgD(ˆe)
e)WxX(XT WxX)−1XT WxD(ˆe)
H1)11, · · · , 1Tm(V −1
Fr(β) = 1TWxX(XT W X)−1XWFr(g) = 1T WgX(XT W X)−1XT W• Data source Zhang, Lin et al (1998)
• 34 women in one menstrual cycle, y =log progesterone level,
x = age, BMI, t = days within one cycle
yij = β1AGEi + β2BMIi + g(tij) + bi + Ui(tij) + ijρ(yij − xTijβ − g(tij)) = minimum• Choice of ρ depends on interest
2. median ρ(r) = |r|ρ(r) = (τ I(r > 0) + (1 − τ )I(r < 0))|r|• Choice of smoothing method for g: kernel; local polynomial;
π(t) = (B1(t), . . . , BN (t))T
Order of polynomials l + 1; Knots: 0 = s0 < s1 · · · < sk = 1
sup |g(t) − αT π(t)| = O(k−r)
where r is an order of smoothness of g. • Advantages: Local smoothing but global representation, Good
ρ(yij − xTijβ − π(tij)T α) = minimum
Let θ = (βT , αT )T and zTij = (xTij, π(tTij))T . The problem is reducedto a linear model problem. ψ(yij − zTijθ)zij = 0
2. ψ is not everywhere differentiable: Hunter and Lange (2000)
• View as a model selection problem
ij θ. This is a useful information-type
criterion for N within a reasonable range
• If k = kn → ∞ and k/n → 0, the estimate of (βT , g) is
• If kn ≈ n1/(2r+1), we have
ij ) − g(tij ))2 = Op(n−2r/(2r+1)),√n(ˆβ − β) → N(0,A−1BA−1)
• A and B can be estimated consistently
yij = xijβ + cos(πtij) + wi(tij) + ij• tij random sample from U(0, 1), xij = 5t2ij + N(0, 0.5)
• wi(t) stationary Gaussian process with γ(t) = 0.4 exp(−η|t|) for
• ZD-estimator as in Moyeed and Diggle (1994): uses kernel
• Estimates of βj(j = 1, 2):
• Non-significance of AGE and BMI in both mean and median
4 Nuevas aportaciones al tratamiento sustitutivo con nicotina La Terapia Sustitutiva con Nicotina se viene utilizandolización aún manteniendo la conducta de fumar comodurante más de 20 años para el tratamiento farmaco-estrategia de preparación para lograr la abstinencia. Por su eficacia demostrada en distintos contextos yEs la opción de tratamiento farmacológico más avala-por s
Magnetic Stimulation May Ease Migraine Pain By Amanda Gardner HealthDay Reporter Thu Jun 22, 7:12 PM ET THURSDAY, June 22 (HealthDay News) -- A magnetic device that seems to help depression and seizures may also short-circuit migraine headaches in their earliest stages, a new study finds. The transcranial magnetic stimulation (TMS) device, about the size of a hair dryer, was able to