Amt.ac.cn

Robust Inference in Semiparametric Models East China Normal University, Shanghai, China Semiparametric Models for Longitudinal Data Influence Diagnostics of Semiparametric Models 1. Case Deletion and Subject Deletion Analysis Robust Estimation of Semiparametric Models {(xij, tij, yij), i = 1, . . . , m, j = 1, . . . , ni}. yij = XTijβ0 + g(tij) + eij, • β0 ∈ Rp , g is a smooth function , • eij are random errors, and are independent between subjects eij = ZTijbi + Ui(tij) + ij, n = • ni = 1: usually partialy linear model In dependent data ni = 1 1. Speckman (1988),Hardle, Liang and Gao (2000):kernel 2. Heckman (1986), He and Shi (1996), Eubank (1999):spline Longitudinal data and mixed models 1. Zeger and Diggle (1994): application to CD4 2. Moyeed and Diggle (1994): convergence rates 3. Zhang, Lin et al (1998), Lin and Zhang (1999), Ruppert, Wand and Carroll(2003): penalized likelihood 4. Lin and Carroll (2000,2001a,b,2002):GEE 1. Cook and Wesiberg (1982), Wei (1998), Banerjee and Frees (1997), Fung, Zhu, Wei and He (2002):Case Deletion 2. Cook (1986), Lu, Ko and Chang (1997), Lesaffre and Verbeke (1998), Zhu, He and He (2003):Local Influence Influence Diagnostics of Semiparametric Model L(β, g) = l(β, g) g (t)dt = l(β, g) gT Kg l(β, g) = log |V | − (Y − Xβ − N g)T V −1(Y − Xβ − N g), Penalized likelihood estimation H = I − ΣV −1 + ΣV −1 ¯ g N + λK)1N T Wg dcdT Cook distance of parameter β c WxX (X T WxX )1X T Wxdc Partial influence for nonparametric part g DFITij = |dTc N(ˆg(ij) ˆg)|/sij where s2ij is the cth diagonal element of N(0, Ir)C−1(0, Ir)T NT θ = (βT , gT )T , Ei = (0, . . . , In , 0, . . . , 0)T , Testing statistics of outlying subject Ti = ˆeT Ei(In − ¯ CD[i](β) = RTi Hβ,iRi Hβ,i = ETi WxX(XT WxX)1XT WxEi CD[i](g) = RTi WgNS−1NTi (NiS−1NTi )1NiS−1NT WgRi Perturbation penalized likelihood L(θ, ω) θω is the estimate of θ under perturbation F = 2Lθω) Fw = DT e)V −1 ¯ e1, · · · , ˆem) Partial influence matrix for parametric components β Fw(β) = DT e)WxX(XT WxX)1XT WxDe) Partial influence matrix for nonparametric components g Fw(g) = DT e)WgN(NT WgN + λK)1NT WgDe) Fe = DT V −e)V −1 ¯ Fe(g) = DT V −e)WgNS−1NT WgDV −e) Fe(β) = DT V −e)WxX(XT WxX)1XT WxDV −e) e)WgNS−1NT WgDe) e)WxX(XT WxX)1XT WxDe) H1)11, · · · , 1Tm(V −1 Fr(β) = 1TWxX(XT W X)1XW Fr(g) = 1T WgX(XT W X)1XT W Data source Zhang, Lin et al (1998) 34 women in one menstrual cycle, y =log progesterone level, x = age, BMI, t = days within one cycle yij = β1AGEi + β2BMIi + g(tij) + bi + Ui(tij) + ij ρ(yij − xTijβ − g(tij)) = minimum Choice of ρ depends on interest 2. median ρ(r) = |r| ρ(r) = (τ I(r > 0) + (1 − τ )I(r < 0))|r| Choice of smoothing method for g: kernel; local polynomial; π(t) = (B1(t), . . . , BN (t))T Order of polynomials l + 1; Knots: 0 = s0 < s1 · · · < sk = 1 sup |g(t) − αT π(t)| = O(k−r) where r is an order of smoothness of g.
Advantages: Local smoothing but global representation, Good ρ(yij − xTijβ − π(tij)T α) = minimum Let θ = (βT , αT )T and zTij = (xTij, π(tTij))T . The problem is reducedto a linear model problem.
ψ(yij − zTijθ)zij = 0 2. ψ is not everywhere differentiable: Hunter and Lange (2000) View as a model selection problem ij θ. This is a useful information-type criterion for N within a reasonable range If k = kn → ∞ and k/n → 0, the estimate of (βT , g) is If kn ≈ n1/(2r+1), we have ij ) − g(tij ))2 = Op(n−2r/(2r+1)), √nβ − β) → N(0,A−1BA−1) • A and B can be estimated consistently yij = xijβ + cos(πtij) + wi(tij) + ij • tij random sample from U(0, 1), xij = 5t2ij + N(0, 0.5) • wi(t) stationary Gaussian process with γ(t) = 0.4 exp(−η|t|) for ZD-estimator as in Moyeed and Diggle (1994): uses kernel Estimates of βj(j = 1, 2): Non-significance of AGE and BMI in both mean and median

Source: http://www.amt.ac.cn/academic/workshop/workshop7/paper3.pdf

Monografias 3-2009 yoly:simposio 3

4 Nuevas aportaciones al tratamiento sustitutivo con nicotina La Terapia Sustitutiva con Nicotina se viene utilizandolización aún manteniendo la conducta de fumar comodurante más de 20 años para el tratamiento farmaco-estrategia de preparación para lograr la abstinencia. Por su eficacia demostrada en distintos contextos yEs la opción de tratamiento farmacológico más avala-por s

Document

Magnetic Stimulation May Ease Migraine Pain By Amanda Gardner HealthDay Reporter Thu Jun 22, 7:12 PM ET THURSDAY, June 22 (HealthDay News) -- A magnetic device that seems to help depression and seizures may also short-circuit migraine headaches in their earliest stages, a new study finds. The transcranial magnetic stimulation (TMS) device, about the size of a hair dryer, was able to

© 2010-2017 Pharmacy Pills Pdf