D:\data\savita\chemistry\classes\ib year 1 - 4ue\units\acid base\acids-bases_labs\analysis of asa\analysis of aspirin.wpd
Analysis of Aspirin Tablets Introduction
For a long time the bark of the willow tree (salix alba) was used as a traditional medicine to relieve the
fever symptoms of malaria. In the 1860's chemists showed that the active ingredient in willow bark issalicylic acid (2-hydroxybenzoic acid) and by 1870 salicylic acid was in wide use as a pain killer(analgesics are drugs which relieve pain), and a fever depressant (antipyretics are drugs which lowerbody temperature). However, salicylic acid is relatively a strong acid, it has the undesirable side effect of irritating anddamaging the mouth, esophagus and stomach membranes. In 1889 the Bayer Company of Germany introduced the ethanoate ester of salicylic acid, naming it‘Aspirin’. Since that time mild analgesics containing aspirin have appeared under many different brandnames.
The main constituent of aspirin tablets is 2 – ethanoylbydroxybenzoic acid (acetylsalicylic acid,CH COOC H COOH).
The acidic conditions in the stomach do not affect aspirin. However, the alkaline juices in the intestines hydrolyse aspirin to ethanoate to 2 – hydroxybenzoate(salicylate) ions. Hydroxybenzoates lower body temperature quickly and very effectively in fever patients, but they havelittle or no effect if the temperature is normal. They are also analgesics, which relieve pain, such as headaches. The toxic dose from hydroxybonzoates is relatively large; their uncontrolled use could be dangerous.
Acetylsalicylic acid, i.e. 2 – ethanoylbydroxybenzoic acid, CH COOC H COOH, is a very large
molecule with only one O — H group to provide hydrogen bonding, hence not very soluble in a polarsolvent such as water, but is soluble in a organic polar solvent such as ethanol.
Purpose The objective of this experiment is to determine the percentage of 2 – ethanoylbydroxybenzoic acid (acetylsalicylic acid, CH COOC H COOH), present in aspirin tablets that are available over-the -counter;
and then to compare with the quantity stated on the box.
The analysis makes use of the fact that aspirin is a monoprotic acid and therefore reacts with sodiumhydroxide according to the following equation:
CH COOC H COOH + NaOH sssssd CH COOC H COO-1 Na+1 + H O
A solution of known mass of aspirin will be prepared using ethyl alcohol, and this will be titrated againsta standard solution of sodium hydroxide, using phenolphthalein as an indicator, to the equivalence point. Knowing the volume of standard sodium hydroxide required for the titration, the number of moles of thealkali can be calculated, and from the above equation the amount in moles of acetylsalicylic acid whichwas in the sample can be determined. Thus, the mass of the aspirin in the original titrated sample may bedetermined. Once the grams of aspirin in the titrated sample are known, it is thus possible to determinethe percent of acetylsalicylic acid, CH COOC H COOH per an aspirin tablet.
number of moles of NaOH used = number of moles of acetylsalicylic acid, aspirin neutralized
mass of, acetylsalicylic acid aspirin in original sample = number of moles x molar mass of acetylsalicylic acid, CH COOC H COOH
percent of aspirin in sample = (mass of aspirin in sample ÷ total mass of aspirin tablet) x 100
(Recall: Titration: a controlled reaction between a compound in which the number of moles of one reactant is known (the titrant, a primary standard) and a measured volume of solution (dispensed from a burette) in which the number of moles of a different reactant is unknown (the analyte). The analyte’s concentration (moles/L) is then determined from the stoichiometry of the reaction and the volume of Materials 0.100 mol dm-3 NaOH , 2 ASA tablets, ethanol (50 cm3 of 95 % alcohol), phenolphthalein indicator,
ortar and pestle, retort stand, burette with burette clamp, 3 Erlenmeyer flasks (250 cm3),
2 beakers (250 cm3), wash bottle with distilled water, glass rod, balance. Procedure 1.
Rinse a clean burette with a small amount of 0.100 mol dm-3 sodium hydroxide solution.
Fill a burette with 0.100 mol dm-3 sodium hydroxide solution and set it up in the burette stand. Allow some of the solution to drain into a waste beaker so that no air remains in the tip of theburette. (Make sure there are no air bubbles in the burette.)
Record the initial burette reading in the Data Table.
Mass one aspirin tablet, record the mass in the Data Table, crush the tablet using the pestle andmortar into a fine powder.
Place the powdered tablet into an Erlenmeyer flask, and dissolve it ~ 10 – 15 cm3 of alcohol. Swirl the flask until the aspirin dissolves.
Add 3 – 4 drops of phenolphthalein indicator to the aspirin tablet solution.
Titrate with the 0.100 mol dm-3 NaOH until a persistent pale pink is observed.
(Note: All tablet medications contain “inert” or “contaminants” ingredients as well as medicinal
ones intentionally added by the drug companies will not dissolve in the alcohol solution,so it will appear cloudy. This will not affect the titration.)
Repeat the titration with the second aspirin tablet provided. Data Collection Create suitable Data Tables for this experiment. Data Processing Determine the moles of NaOH
, moles of acetylsalicylic acid (ASA) titrated in each tablet,
mass of acetylsalicylic acid(ASA ) in each tablet, hence the percentage of acetylsalicylic acid (ASA) inthe aspirin tablet.
Compare the mass of acetylsalicylic acid, (ASA) aspirin in the tablet that was determined by yourexperiment to the value claimed by the manufacturer on the box.
What sources of error were incurred in this experiment and how might they have affected your results?
Why are some ASA tablets coated or buffered?
What other ingredients are included in an aspirin tablet ?
50 Jaw-Dropping Pharmaceutical, Biotech, and Life Science Statistics Without question, I understand how intimidating the pharmaceutical, biotech, and life science sector can be for those without a background in science. If it's not the science and discovery process itself, or the cross-company collaborations, simply trying to accurately spell or pronounce experimental drug names will almost c
Overcoming Addictions Overcoming Addictions Brought to you by www.HealthyPages.info Copyright @ 2007 HealthyPages.info. All Rights Reserved. Overcoming Addictions Overcoming Addictions You have Master Rights to this eBook! When you received Overcoming Addictions , you automatically gained master rights. This means you may sell or giveaway Overcoming Addictions .