Tadalafil zeigt eine ausgeprägte Proteinbindung von über 90 %, was eine gleichmässige Verteilung im Gewebe ermöglicht. Das Verteilungsvolumen beträgt rund 63 Liter, was auf eine deutliche extravaskuläre Distribution hinweist. Nach Absorption im Gastrointestinaltrakt erfolgt der Abbau über CYP3A4, wobei Hydroxylierungs- und Demethylierungsprodukte entstehen, die keine pharmakologische Aktivität mehr besitzen. Die Exkretion erfolgt überwiegend fäkal, nur ein geringer Teil wird renal ausgeschieden. Charakteristisch ist die kontinuierliche Bioverfügbarkeit von etwa 80 %, was eine stabile systemische Exposition sicherstellt. Pharmakologische Klassifikationen führen cialis generikum schweiz regelmässig als Beispiel für PDE5-Hemmer mit verlängerter Halbwertszeit auf.
Cs.sch.ac.kr
Data Representation DATA REPRESENTATION Data Types Complements Fixed Point Representations Floating Point Representations Other Binary Codes Error Detection Codes Computer Organization Computer Architectures Lab Data Representation Data Types DATA REPRESENTATION Information that a Computer is dealing with * Data - Numeric Data Numbers( Integer, real) - Non-numeric Data Letters, Symbols * Relationship between data elements - Data Structures Linear Lists, Trees, Rings, etc * Program(Instruction)
Computer Organization Computer Architectures Lab Data Representation Data Types NUMERIC DATA REPRESENTATION Data Numeric data - numbers(integer, real) Non-numeric data - symbols, letters Number System Nonpositional number system - Roman number system Positional number system - Each digit position has a value called a weight associated with it - Decimal, Octal, Hexadecimal, Binary Base (or radix) R number - Uses R distinct symbols for each digit - Example A = a . a a .a …a
Σ a ⋅ Rk Radix point(.) separates the integer portion and the fractional portion R = 10 Decimal number system R = 2 Binary R = 8 Octal R = 16 Hexadecimal Computer Organization Computer Architectures Lab Data Representation Data Types WHY POSITIONAL NUMBER SYSTEM IN THE DIGITAL COMPUTERS ? Major Consideration is the COST and TIME - Cost of building hardware Arithmetic and Logic Unit, CPU,Communications - Time to processing Arithmetic - Addition of Numbers - Table for Addition * Non-positional Number System - Table for addition is infinite --> Impossible to build, very expensive even if it can be built * Positional Number System - Table for Addition is finite --> Physically realizable, but cost wise the smaller the table size, the less expensive --> Binary is favorable to Decimal 0 1 2 3 4 5 6 7 8 9 0 0 1 2 3 4 5 6 7 8 9 1 1 2 3 4 5 6 7 8 9 10 2 2 3 4 5 6 7 8 9 1011 3 3 4 5 6 7 8 9 101112 4 4 5 6 7 8 9 10111213 5 5 6 7 8 9 1011121314 6 6 7 8 9 101112131415 7 7 8 9 10111213141516 Binary Addition Table 8 8 9 1011121314151617 9 9 101112131415161718 Decimal Addition Table Computer Organization Computer Architectures Lab Data Representation Data Types REPRESENTATION OF NUMBERS POSITIONAL NUMBERS Decimal Binary Octal Hexadecimal 00 0000 00 0 01 0001 01 1 02 0010 02 2 03 0011 03 3 04 0100 04 4 05 0101 05 5 06 0110 06 6 07 0111 07 7 08 1000 10 8 09 1001 11 9 10 1010 12 A 11 1011 13 B 12 1100 14 C 13 1101 15 D 14 1110 16 E 15 1111 17 F Binary, octal, and hexadecimal conversion 1 0 1 0 1 1 1 1 0 1 1 0 0 0 1 1 Computer Organization Computer Architectures Lab Data Representation Data Types CONVERSION OF BASES Base R to Decimal Conversion … a . a … a V(A) = Σ a ⋅ Rk (736.4) = 7 x 8 + 3 x 8 = 7 x 64 + 3 x 8 + 6 x 1 + 4/8 = (478.5) 10 (110110) = . = (54) 10 (110.111) = . = (6.785) 10 (F3) = . = (243) (0.325) = . = (0.578703703 .) Decimal to Base R number - Separate the number into its integer and fraction parts and convert each part separately. - Convert integer part into the base R number --> successive divisions by R and accumulation of the remainders. - Convert fraction part into the base R number --> successive multiplications by R and accumulation of integer digits Computer Organization Computer Architectures Lab Data Representation Data Types Convert 41.6875 to base 2. Integer = 41 Fraction = 0.6875 1.5000 x 2 1.0000 (41) = (101001) (0.6875) = (0.1011) (41.6875) = (101001.1011) Exercise Convert (63) to base 5: (223) 5 Convert (1863) to base 8: (3507) Convert (0.63671875) to hexadecimal: (0.A3) Computer Organization Computer Architectures Lab Data Representation Complements COMPLEMENT OF NUMBERS Complements - to convert positive to negative or vice versa Two types of complements for base R number system: - R’s complement - (R-1)’s complement The (R-1)’s Complement Subtract each digit of a number from (R-1) - 9’s complement of 835 is 164 - 1’s complement of 1010 is 0101 (bit by bit complement operation) The R’s Complement Add 1 to the low-order digit of its (R-1)’s complement - 10’s complement of 835 is 164 + 1 = 165 - 2’s complement of 1010 is 0101 + 1 = 0110 Computer Organization Computer Architectures Lab Data Representation Fixed Point Representations FIXED POINT NUMBERS Numbers Fixed Point Numbers and Floating Point Numbers Binary Fixed-Point Representation X = x x . x x . x x . x Sign Bit(x ) - 0 for positive - 1 for negative Remaining Bits(x . x x . x x . x ) - Following 3 representations Signed magnitude representation Signed 1’s complement representation Signed 2’s complement representation Example: Represent +9 and -9 in 7 bit-binary number Only one way to represent +9 ==> 0 001001 Three different ways to represent -9: In signed-magnitude: 1 001001 In signed-1’s complement: 1 110110 In signed-2’s complement: 1 110111 In general, in computers, fixed point numbers are represented either integer part only or fractional part only. Computer Organization Computer Architectures Lab Data Representation Fixed Point Representations CHARACTERISTICS OF 3 DIFFERENT REPRESENTATIONS Complement Signed magnitude --> Complement only the sign bit Signed 1’s complement --> Complement all the bits including sign bit Signed 2’s complement -->Take the 2’s complement of the number, including its sign bit. Maximum and Minimum Representable Numbers and Representation of Zero Signed Magnitude Max: 2n - 2-m 011 . 11.11 . 1 Min: -(2n - 2-m) 111 . 11.11 . 1 Zero: +0 000 . 00.00 . 0 -0 100 . 00.00 . 0 Signed 1’s Complement Max: 2n - 2-m 011 . 11.11 . 1 Min: -(2n - 2-m) 100 . 00.00 . 0 Zero: +0 000 . 00.00 . 0 -0 111 . 11.11 . 1 Signed 2’s Complement Max: 2n - 2-m 011 . 11.11 . 1 Min: -2n 100 . 00.00 . 0 Zero: 0 000 . 00.00 . 0 Computer Organization Computer Architectures Lab Data Representation Fixed Point Representations ARITHMETIC ADDITION SIGNED MAGNITUDE [1] Compare their signs [2] If two signs are the same , ADD the two magnitudes - Look out for an overflow [3] If not the same , compare the relative magnitudes of the numbers and then SUBTRACT the smaller from the larger --> need a subtractor to add [4] Determine the sign of the result 15 1111 -> 01111 3 0011 -> 00011 6 + (- 9) -6 + (-9) - 3 0011 -> 10011 -15 1111 -> 11111 Overflow 9 + 9 or (-9) + (-9) 9 1001 (1)0010 overflow Computer Organization Computer Architectures Lab Data Representation Fixed Point Representations ARITHMETIC ADDITION SIGNED 2’s COMPLEMENT Add the two numbers, including their sign bit, and discard any carry out of left-most(sign) bit +) 9 0 1001 +) 9 0 1001 +) -9 1 0111 +) -9 1 0111 -18 (1)0 1110 n-1 n-1 n-1 overflow 2 operands have the same sign +) 9 0 1001 and the result sign changes n-1 n-1 n-1 n-1 n-1 n-1 n-1 n-1 n-1 Computer Organization Computer Architectures Lab Data Representation Fixed Point Representations ARITHMETIC ADDITION SIGNED 1’s COMPLEMENT Add the two numbers, including their sign bits. - If there is a carry out of the most significant ) bi the resu lt is incremented by 1 and the carry is discarded. end-around carry +) -9 1 0110 +) 9 0 1001 (1) 0(1)0010 not overflow +) 9 0 1001 (1)0 1100 1 (1)0010 overflow Computer Organization Computer Architectures Lab Data Representation Fixed Point Representations COMPARISON OF REPRESENTATIONS * Easiness of negative conversion S + M > 1’s Complement > 2’s Complement * Hardware - S+M: Needs an adder and a subtractor for Addition - 1’s and 2’s Complement: Need only an adder * Speed of Arithmetic 2’s Complement > 1’s Complement(end-around C) * Recognition of Zero 2’s Complement is fast Computer Organization Computer Architectures Lab Data Representation Fixed Point Representations ARITHMETIC SUBTRACTION Subtraction Add complement of the subtrahend to the minuend including the sign bits. Take the complement of the subtrahend ( ± A ) - ( - B ) = ( ± A ) + B ( ± A ) - B = ( ± A ) + ( - B ) Computer Organization Computer Architectures Lab Data Representation Floating Point Representation FLOATING POINT NUMBER REPRESENTATION * The location of the fractional point is not fixed to a certain location * The range of the representable numbers is wide --> high precision sign exponent mantissa - Mantissa Signed fixed point number, either an integer or a fractional number - Exponent Designates the position of the radix point
Decimal Value V(F) = V(M) * RV(E) M: Mantissa E: Exponent R: Radix Computer Organization Computer Architectures Lab Data Representation Floating Point Representation FLOATING POINT NUMBERS .1234567 mantissa exponent ==> +.1234567 x 10 Note: In Floating Point Number representation, only Mantissa(M) and Exponent(E) are explicitly represented. The Radix(R) and the position of the Radix Point are implied. Example A binary number +1001.11 in 16-bit floating point number representation(6-bit exponent and 10-bit fractional mantissa) 0 0 00100 100111000 Exponent Mantissa 0 0 00101 010011100 Computer Organization Computer Architectures Lab Data Representation Floating Point Representation CHARACTERISTICS OF FLOATING POINT NUMBER REPRESENTATIONS Normal Form - There are many different floating point number representations of the same number --> Need for a unified representation in a given computer - the most significant position of the mantissa contains a non-zero digit Representation of Zero - Zero Mantissa = 0 - Real Zero Mantissa = 0 Exponent = smallest representable number which is represented as 00 . 0 <-- Easily identified by the hardware Computer Organization Computer Architectures Lab Internal and Data Representation External Representation INTERNAL REPRESENTATION AND EXTERNAL REPRESENTATION Computer External Representation External Representation Internal Representation External Representation External Representations Internal Representations - Presentability - Efficiency - Efficiency Memory space Communication Processing time Reliability - Easy to convert to - Easy to handle external representation - BCD, ASCII, EBCDIC - Fixed and Floating points Computer Organization Computer Architectures Lab Data Representation External Representations EXTERNAL REPRESENTATION Numbers Most of numbers stored in the computer are eventually changed by some kinds of calculations --> Internal Representation for calculation efficiency --> Final results need to be converted to as External Representation for presentability Alphabets, Symbols, and some Numbers Elements of these information do not change in the course of processing --> No needs for Internal Representation since they are not used for calculations --> External Representation for processing and presentability Example Decimal Number: 4-bit Binary Code BCD(Binary Coded Deciaml) greater than 1001 are not used 2 0010 3 0011 4 0100 5 0101 6 0110 7 0111 8 1000 9 1001 Computer Organization Computer Architectures Lab Data Representation External Representations OTHER DECIMAL CODES Decimal BCD(8421) 2421 84-2-1 Exess-3 0 0000 0000 0000 0011 1 0001 0001 0111 0100 2 0010 0010 0110 0101 3 0011 0011 0101 0110 4 0100 0100 0100 0111 5 0101 1011 1011 1000 6 0110 1100 1010 1001 7 0111 1101 1001 1010 8 1000 1110 1000 1011 9 1001 1111 1111 1100 Note: 8,4,2,-2,1,-1 in this table is the weight associated with each bit position. d3 d2 d1 d0: symbol in the codes BCD: d3 x 8 + d2 x 4 + d1 x 2 + d0 x 1 ==> 8421 code. 2421: d3 x 2 + d2 x 4 + d1 x 2 + d0 x 1 84-2-1: d3 x 8 + d2 x 4 + d1 x (-2) + d0 x (-1) Execess-3: BCD + 3 BCD: It is difficult to obtain the 9’s complement. However, it is easily obtained with the other codes listed above. Computer Organization Computer Architectures Lab Data Representation Other Binary codes GRAY CODE * Characterized by having their representations of the binary integers differ in only one digit between consecutive integers * Useful in analog-digital conversion. The complete 4-bit Gray code Decimal Gray Binary number g g g g b b b b 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 2 0 0 1 1 0 0 1 0 3 0 0 1 0 0 0 1 1 4 0 1 1 0 0 1 0 0 5 0 1 1 1 0 1 0 1 6 0 1 0 1 0 1 1 0 7 0 1 0 0 0 1 1 1 8 1 1 0 0 1 0 0 0 9 1 1 0 1 1 0 0 1 10 1 1 1 1 1 0 1 0 11 1 1 1 0 1 0 1 1 12 1 0 1 0 1 1 0 0 13 1 0 1 1 1 1 0 1 14 1 0 0 1 1 1 1 0 15 1 0 0 0 1 1 1 1 Computer Organization Computer Architectures Lab Data Representation Other Binary codes GRAY CODE - ANALYSIS Letting g g . . . g g be the (n+1)-bit Gray code for the binary number b b g = b ⊕ b , 0 ≤ i ≤ n-1 b = g ⊕ g ⊕ . . . ⊕ g Reflection of Gray codes 0 0 0 0 00 0 000 1 0 1 0 01 0 001 1 1 0 11 0 011 1 0 0 10 0 010 1 10 0 110 1 11 0 111 1 01 0 101 The Gray code has a reflection property - easy to construct a table without calculation, - for any n: reflect ca se n-1 about a 1 111 mirror at its bottom and prefix 0 and 1 to top and bottom halv ectively 1 001 1 101 1 000 Computer Organization Computer Architectures Lab Data Representation Other Binary codes CHARACTER REPRESENTATION ASCII(American Standard Code for Information Interchange) Code MSB (3 bits) Computer Organization Computer Architectures Lab Data Representation Other Binary codes CONTROL CHARACTER REPRESENTAION NUL Null SOH Start of Heading (CC) STX Start of Text (CC) ETX End of Text (CC) EOT End of Transmission (CC) ENQ Enquiry (CC) ACK Acknowledge (CC) BEL Bell BS Backspace (FE) HT Horizontal Tab. (FE) LF Line Feed (FE) VT Vertical Tab. (FE) FF Form Feed (FE) CR Carriage Return (FE) SO Shift Out SI Shift In DLE Data Link Escape (CC) DC1 Device Control 1 DC2 Device Control 2 DC3 Device Control 3 DC4 Device Control 4 NAK Negative Acknowledge (CC) SYN Synchronous Idle (CC) ETB End of Transmission Block (CC) CAN Cancel EM End of Medium SUB Substitute ESC Escape FS File Separator (IS) (CC) Communication GS Group Separator (IS) RS Record Separator (IS) (FE) Format Effector US Unit Separator (IS) (IS) Information DEL Delete Separator Computer Organization Computer Architectures Lab Data Representation Error Detecting codes ERROR DETECTING CODES Parity System - Simplest method for error detection - One parity bit attached to the information - Even Parity and Odd Parity Even Parity - One bit is attached to the information so that the total number of 1 bits is an even number 1011001 0 1010010 1 Odd Parity - One bit is attached to the information so that the total number of 1 bits is an odd number 1011001 1 1010010 0 Parity Bit Generation For b b . b (7-bit information); even parity bit b = b ⊕ b ⊕ . ⊕ b For even parity bit Computer Organization Computer Architectures Lab Data Representation Error Detecting codes PARITY GENERATOR AND PARITY CHECKER Parity Generator Circuit(even parity) Parity Checker indicator Computer Organization Computer Architectures Lab
VRIJDAG 2 APRIL 2010 DE MORGEN Reageren? lezers@demorgen.be MANU CLAEYS en WIM VAN HEES doorprikken ‘die ene grote kromme redenering’ in de Oosterweelbeslissing MANU CLAEYS EN WIM VAN HEES zijn respectievelijk lid van de actiegroep stRaten-generaal en Ademloos. Guido Verbeke en Peter Verhaeghe tekenen mee. Sinds oktober 2008 zijn niet minder dan zeven onafhankeli
PHARMACY FORMULARY Revised 3/05 ___________________________________ Dr. Dawn Whelchel, Chairperson Medication Use Team ___________________________________ Dana Haden, RPh. Director of Pharmacy PHARMACY FORMULARY TABLE OF CONTENTS ANTI-INFECTIVES…………………………………………………….1 Antibiiotics, Sulfas, Nitrofurans, Antifungals, Antima